Homomorphism Extension

نویسنده

  • Angela Wuu
چکیده

We define the Homomorphism Extension (HomExt) problem: given a group G, a subgroup M ≤ G and a homomorphism φ : M → H , decide whether or not there exists a homomorphism φ̃ : G → H extending φ, i.e., φ̃|M = φ. This problem arose in the context of list-decoding homomorphism codes but is also of independent interest, both as a problem in computational group theory and as a new and natural problem in NP of unsettled complexity status. We consider the case H = Sm (the symmetric group of degree m), i.e., φ : G → H is a G-action on a set of m elements. We assume G ≤ Sn is given as a permutation group by a list of generators. We characterize the equivalence classes of extensions in terms of a multidimensional oracle subset-sum problem. From this we infer that for bounded G the HomExt problem can be solved in polynomial time. Our main result concerns the case G = An (the alternating group of degree n) for variable n under the assumption that the index of M in G is bounded by poly(n). We solve this case in polynomial time for all m < 2/ √ n. This is the case with direct relevance to homomorphism codes (Babai, Black, and Wuu, arXiv 2018); it is used as a component of one of the main algorithms in that paper.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complexity of the homomorphism extension problem in the random case

We prove that if A is a large random relational structure (with at least one relation of arity at least 2) then the homomorphism extension problem EXT(A) is almost surely NP-complete.

متن کامل

Central Extension of Mappings on von Neumann Algebras

Let M be a von Neumann algebra and ρ : M → M be a ∗-homomorphism. Then ρ is called a centrally extendable ∗-homomorphism (CEH) if there is a maximal abelian subalgebra (masa) M of the commutant M of M and a surjective ∗-homomorphism φ : M → M such that φ(Z) = ρ(Z) for all Z in the center of M. A ∗-ρderivation δ : M → M is called a centrally extendable ∗-ρ-derivation (CED) if there is a masa M o...

متن کامل

Notes on Galois Theory II

Lemma 2.1. Let F be a field, let E = F (α) be a simple extension of F , where α is algebraic over F and f = irr(α, F, x), let ψ : F → K be a homomorphism from F to a field K, and let L be an extension of K. If β ∈ L is a root of ψ(f), then there is a unique extension of ψ to a homomorphism φ : E → L such that φ(α) = β. Hence there is a bijection from the set of homomorphisms φ : E → L such that...

متن کامل

Splitting finite antichains in the homomorphism order

A structural condition is given for finite maximal antichains in the homomorphism order of relational structures to have the splitting property. It turns out that non-splitting antichains appear only at the bottom of the order. Moreover, we examine looseness and finite antichain extension property for some subclasses of the homomorphism poset. Finally, we take a look at cut-points in this order.

متن کامل

A pointfree version of remainder preservation

Recall that a continuous function $fcolon Xto Y$ between Tychonoff spaces is proper if and only if the Stone extension $f^{beta}colon beta Xtobeta Y$ takes remainder to remainder, in the sense that $f^{beta}[beta X-X]subseteq beta Y-Y$. We introduce the notion of ``taking remainder to remainder" to frames, and, using it, we define a frame homomorphism $hcolon Lto M$ to be $beta$-proper, $lambd...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1802.08656  شماره 

صفحات  -

تاریخ انتشار 2018